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ABSTRACT 

In this paper, we describe iLearn, an application that 
embodies the Program-by-Demonstration paradigm on the 
Android platform. The objective here is to be able to 
"demonstrate" an activity to the phone that attempts to learn 
it, and recognize every subsequent occurrence of this 
particular activity. The paper will begin with the steps 
involved in feature engineering the sensor data from the 
microphone and the accelerometer. It will then cover how a 

sequence of actions can be modeled using HMMs, including 
state discovery. It also discusses how employing user 
feedback in the learning process can provide for a more 
provocative user experience. 
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1. INTRODUCTION 

Mobile phones, for better or worse, have woven themselves 

into the very fabric of our society. Their phenomenal 

penetration into all facets of our lives has fundamentally 

altered how we use them as tools and as social 

intermediaries. In particular, phones today have a barrage of 

sensors that digitize the physical world around us. On the 

flip side of the same coin, they keep us virtually connected 

to anyone on the planet. It isn’t much of a stretch, then, to 

make the argument towards recognizing them as bona-fide 
social participants, if not citizens of modern society.  

To buffer this line of thought it might be worthwhile to 

think of devices as beings. One can imagine a framework 

within which it would be possible to download predefined 

personas like Casper the friendly ghost that can be 

customized or adapted to the needs of the user. Some might 

see use in them as personal secretaries, seek them as 

companions or employ them as trainers. Immediately we 

see how voice becomes the primary mode of interaction. 

We also see how bringing emotional and social intelligence 

to these devices gives them life, so as to speak, which will 

be the focus of future work. 

This paper describes an Android app that is a small step 

towards this direction. Like a lot of apps, its basic purpose 

would be to harness the phones capability to link the 

physical world with the cyber world. Only instead of being 

hardcoded for a particular application it can be taught to 

identify multiple events and respond accordingly, in 

essence allowing the user to intuitively script the physical 

world. A couple of scenarios allow us to describe it further 
— a phone uses its sensors to fingerprint a physical event 

like the door of a user’s office being closed shut; it 

identifies the event the next time it occurs and carries out a 

task like blocking off the next hour on the user’s calendar. 

If it detects multiple people in the room, it can prioritize 

phone calls and change the chat client status to busy. In 

another scenario, it fingerprints the sound of shower water 

running and start’s a timer for 10 minutes to remind you to 

conserve water or can detect when you have been sitting in 

a single position for too long and remind you to stretch. 

Perhaps it can come pre-taught to detect aggravated 
motions and screams for help and place a call with 911 or 

the local police.  

In section 3, we discuss the extraction of audio features 

from the microphone on the Android that allow us to do 

precisely this sort of fingerprinting. We use the framework 

used in popular speech recognition systems to model and 

learn ambient sounds (running water, whistling kettle, 

Starbucks). We also discuss the feature extraction for the 

accelerometer. For the sake of simplicity only the 

accelerometer and microphone sensor data are used.   

In this section, we also discuss the learning algorithms used 

for learning the sequence of actions, namely HMMs 
(Hidden Markov Models) and methods to overcome the 

fundamental limitation of HMMs i.e. state discovery. We 

also compare the performance of the different methods 

used. 

In section 4, we present the results of the system across 

three activities including the act of closing the door, leaving 

the phone on the table with random background noise, and 

the act of walking with the phone and clapping at the end. 

The purpose of the last one is to test the discriminating 

power of the learned model.  
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2. RELEVANT WORK 

Different aspects of building such an application for the 

mobile phone have been touched upon by research efforts 

from various groups. SoundSense focuses on the use of the 

microphone sensor for people-centric applications  [2]. The 

Mobile Lifelogger uses activity language to model data 

from the accelerometer  [3].  Work by Ramos, et al. present 

a scheme for classification of unstructured audio based on 

STACS (Simultaneous Temporal and Contextual Splitting) 
which discovers the appropriate number of states and 

efficiently learns accurate HMM parameters for given data  

[4].  

SoundSense   

SoundSense discusses and implements a general-purpose 

system for sensing sound on the iPhone. It uses a 

combination of supervised and unsupervised learning 

techniques to classify both general sounds (e.g. music, 

voice) and discover novel sound events unique to the 

individual user. Keeping in mind the resource limitations of 

building a system on a mobile phone the architecture uses 

frame admission control based on the energy level and 

spectral entropy of the incoming audio signal. A low energy 
level indicates silence or undesirable phone context. A high 

entropy level represents a flat spectrum (silence or white 

noise). Once a frame is adjudged to have interesting 

content, it is sent down the pipeline to a coarse category 

classifier (decision tree). A Markov model recognizer is 

used to smooth the output from the decision tree and sent to 

either a voice analyzer, a music analyzer or an ambient 

sound learner.  

The ambient sound learner is an unsupervised classifier that 

discovers over time environmental sounds that are 

significant to the individual user. MFCC (Mel-Frequency 

Cepstral Coefficients) are used as audio features, which 
inherently encode details in the frequency bands to which 

the human ear is sensitive. A Bayes Classifier is used to bin 

frames into one of B multivariate Gaussians classes. These 

classes are determined by a ranking algorithm based on 

encounter frequency and summed duration of the sounds. 

Similar to the coarse classifier an HMM is used to smooth 

the output. 

Mobile Lifelogger   

The Mobile Lifelogger is basically a system to aid with the 

easy creation and retrieval of activity logs collected from 

the sensors on the mobile phone. The sensory data from the 

accelerometer and the GPS are converted to an ‘activity 

language’ so as to apply natural language processing 

techniques to index, recognize, segment, cluster, retrieve, 
and infer high-level semantic meanings of the collected 

lifelogs. The other advantages of such an approach are 

dimension reduction, and a uniform representation of 

heterogeneous sensor data. 

The crux of the approach lies in the analogy between 

human activity and language (hence the term ‘activity 

language’). They both exhibit structure and satisfy 

grammars. The anatomy of the body allows us to perform 

certain atomic movements such as “turn upper body left” 

where as “jump up at 10g acceleration” is not possible. 

Such atomic movements form the vocabulary of the activity 

language. Empirically, the similarity between ambulatory 
activity and natural languages can be evaluated using Zipf’s 

law.  While such an approach looks promising for the 

purposes of the iLearn app, we believe that at least for 

audio classification, the data wouldn’t follow Zipf’s law 

very well.  

STACS  

HMMs have been used extensively in speech recognition, 

bioinformatics, information extraction and other areas. One 

of the deficiencies of HMMs is that the model topology and 

the number of states have to be chosen in advance. 

Secondly there is a tendency for the model to over fit the 

training data if it is sparse. The authors of  [1] discuss a top-

down model selection and learning algorithm that 

constructs an HMM by alternating between parameter 
learning and model selection while incrementally increasing 

the number of states. Candidate models are generated by 

splitting existing states and optimizing relevant parameters 

(contextual and temporal), and are then evaluated for 

possible selection.  

The Bayesian Information Criterion, or BIC score, is an 

asymptotic approximation of the true posterior probability 

(which itself is intractable to compute) and is used to 

compare the candidate models to each other. The BIC score 

effectively punishes complexity by penalizing the number 

of free parameters and rewards goodness-of-fit via the data 
log-likelihood, thus safeguarding against over-fitting.  

3. DESIGN AND IMPLEMENTATION 

This section discusses the design considerations and 
implementation approaches that were considered to develop 

the iLearn app on the Android. First we discuss the feature 

extraction process and then the machine-learning algorithm. 

In the rest of the paper we assume that that the data on 

which we can run our learning algorithms is quite sparse 

and consists of three repetitions of an event. 

Feature Extraction 

Microphone 

The challenges of developing on a cellphone are defined 

and limited by the strain placed on the battery, CPU and 

memory resources. Also microphones on telephones, 

walkie-talkies, etc. sample the incoming audio signal at 8 

KHz, which is quite adequate for human speech. But 

according to the Nyquist-Shannon sampling theorem, the 

microphone can’t capture information above 4 KHz, 

implying that information at these higher frequencies is 
lost.  



On the Android, the AudioRecord class manages the audio 

resources for applications to record audio from the 

hardware. Audio is sampled into the circular hardware 

buffer using the 16 KHz 16-bit PCM Mono format. This 

data is then segmented into uniform frames for feature 

extraction and classification. Ideally, we would like to use 
the same parameters used by widely used speech 

recognition systems. HTK, for example, uses frames of 25 

ms that overlap every 10 ms. While these are heuristic 

figures that have been found to work well in practice, the 

basic requirement is that the frame width be short enough 

so that the audio content is stable (steady state) while being 

long enough to capture the characteristic signatures of the 

sound. 

This segmenting and overlap is implemented using the 

interface method provided by Android that implements a 

callback function every predefined period (set to 10 ms). 

This 10 ms data is copied into one of three arrays in a 
circular function, i.e. each of these arrays gets data once 

every 30 ms. These arrays then push their data into a larger 

array that can hold 25 ms of data in a circular fashion. 

Once we have the frame of samples, we apply MFCC, 

which is a widely used feature set for audio processing. The 

steps involved are: (i) apply a hamming window to each 

frame to suppress the boundaries to counteract the effects of 

spectral leakage that occurs during the FFT, (ii) calculate 

the FFT spectrum of the frame, (iii) wrap onto the 

perceptual Mel-frequency scale, (iv) convert to dB, and (v) 

take the inverse discrete cosine transform (DCT-II since it’s 
real valued). Only the first few (12) coefficients are used to 

represent a frame. Therefore MFCCs provide a low-

dimensional, smoothed version of the log spectrum, and 

thus are a good and compact representation of the spectral 

shape. A modified version of the CoMIRVA project’s 

MFCC class was implemented for this purpose  [5]. 

Accelerometer 

Accelerometers are devices that measure the proper 

acceleration, i.e. the acceleration relative to free-fall (which 

is zero-gravity). This is because they must work without 

any outside reference. This usually means that the only 

observable quantity is force. In particular, the gravitational 

pull of the Earth introduces a force that is interpreted as 

acceleration. Thus, the phone when kept idle on a table 
measures the force acted against it, which comes out to be 

9.8 m/s2 along the z-axis.  

The accelerometer is sampled at the fastest setting provided 

by Android, which is SENSOR_DELAY_FASTEST, which 

has observed to be between 5-10 ms on the Droid. The 

readings along the x, y and z-axis are recorded at this 

frequency. They include the effect of the gravity component 

along the axes depending on how the phone was held. Some 

preprocessing of the accelerometer data is necessary to 

remove the effect of device orientation from the data. 

Otherwise the device needs to be held in exactly the same 

way for every repetition of an activity. 

Applying a ramp filter (high pass filter) sufficiently negated 

the effect of gravity. It was noticed that noise occurs at the 

higher frequency and employing a high-frequency roll-off 

smoothens out the data.   

Feature Set 

We end up with a 15-D feature set (12 MFCC + 

Acceleration along x, y and z) which is written to a file 
every 50 ms for further offline processing on Matlab. 

Before any processing is done in Matlab the data is first 

standardized, i.e., the data is transformed to have zero mean 

and unit variance.  

Learning Process 

A number of machine-learning approaches were looked 

into, including DTW, heuristic thresholds and Bayes 

Classifier, before settling on HMMs, the de-facto method 

for pattern recognition. It is interesting to note that a key 

point that kept coming up while these methods were being 

discussed was the idea to employ some sort of temporal 

clustering on data that were similar in value, and seemed to 

belong to the same state, so as to speak. This, of course, is 
quite similar to the concept of HMMs. 

Hidden Markov Models (HMMs) 

HMMs are widely used in speech, handwriting and gesture 
recognition. HMMs assume that the system being modeled 

is a Markov process, i.e. the future states belong only on the 

current state. It makes sense to use HMMs for the iLearn 

app because we have a sequence of sensor data that we 

need to learn while the state sequence that produced this 

output remains hidden. We learn a model that statistically 

determines transition probabilities, output probabilities and 

priors among the states. For our purposes we assume that 

the features are independent of each other (diagonal 

covariance) and that the HMM is a forward model, i.e. the 

state transitions are limited to staying in the current state or 
moving to the next state. HMMs was implemented in 

Matlab using a modified version of the HMM Toolkit for 

Matlab  [6]. 

State Discovery 

One of the shortcomings of the HMM is that the number of 

states need to be defined beforehand. In the case of the 

iLearn app, it would not make sense to do this, as it 

contradicts the very purpose of the application, which is to 

be able to learn whatever event the user wants to teach it. 

A couple of approaches were tried to discover the optimum 

number of states for a given activity. First, a brute force 

method is used wherein a new model is created by 

increasing the number of states of the prior model by one 

and its parameters learnt from scratch with random 
initializations. This new model is compared with the old 

model using BIC, which penalizes model complexity (state 



size). This process continues until the prior model has a 

higher BIC score than the new model. 

The second approach used the STACS method to generate 

N candidate models at each step, where N is the number of 

states in the prior model. Each split state generates one 

particular candidate. The initialization of the new states 
depends on the state that was split. The priors of the new 

states are half the priors of the parent state. The transitions 

from one state to the other are half the self-transition 

probability of the parent state. These candidates are 

compared against each other and the prior state using BIC. 

The state splitting continues until the prior model carries a 

higher score than the other candidate models. 

As an addition to the second approach, the models were 

trained on two sequences of data (first two repetitions) and 

the BIC score was calculated on the held out third sequence 

of data to check for and prevent overfitting of the sparse 

dataset.   

4. EXPERIMENTAL RESULTS 

Feature Extraction 

Initially the feature extraction process on the Android was 

taking upwards of 250 ms. It was realized that Java’s 
garbage collection in Android was taking over 200 ms and 

that this phenomenon was occurring frequently within the 

MFCC extraction process. Further analysis revealed that it 

was the instantiation of arrays every time the MFCC was 

computed that was causing the garbage collection to kick 

in. To circumvent this, the code was modified and all the 

arrays were made static. This included making functions in-

line and having certain variables be made public so that 

passing and copying of arrays could be made minimal. This 

brought down the time taken to compute the MFCC to a 

more palatable 15 ms.  

The bottleneck it appeared was the wrapping of the FFT to 
the Mel-frequency which takes 12 ms. This step is 

performed by multiplying a 24x513 Mel-filter bank with the 

513x1 real FFT. Normal matrix multiplication is O(N3). 

The fastest algorithm for multiplying matrices is the 

Strassen Algorithm with O(N2.8). But the speed up is 

noticed only for very large matrices. Various other methods 

were looked into including performing the matrix 

multiplication in C using JNI. In Java, however, 2-d arrays 

are objects that need to be passed and copied from one 

environment to the other. The improvement in time would 

be negligible if at all. 

The push to lower the time taken by the MFCC is to be able 

to extract features on 25 ms frames that overlap every 10 

ms. However, in [2] Lu, et al. show that a larger frame 

length tends to increase recall but decrease precision for 

ambient sounds. 64 ms it appears is a good trade-off point 

considering both precision and recall. Thus we see that the 

length of the MFCC frame is critical as it impacts the 

computational costs and classification accuracy. It would be 

an important parameter to tweak once an end-to-end system 

is deployed and there is sufficient data to run tests on. 

Learning Process 

We evaluate the three different state discovery approached 

independently, and then use a test matrix to check their 

performance across different activities. 

Brute Force 

Using this approach, we find that because of the random 

initializations, the fact that the EM algorithm is prone to 

find local minima, and the sparseness of the data, the state 

size varies a lot. To learn the door close activity over three 
repetitions, the state size varies from 2 to 8 states. The log 

likelihood on the training data falls in between -2500 to -

1500.  

STACS 

Here we find this approach overfitting the training data very 

strongly. Upwards of 20 states is usually learnt on the three 

sequences of training data. The algorithm seems to be 

assigning states to single data points as the log likelihood 

becomes positive (+250) for some of the candidate models. 

This is characteristic of overfitting in Gaussians. Because 

there is only one data point, the variance goes to zero and 

the likelihood goes to infinity. 

STACS using Held-out data 

To overcome the strong overfitting tendencies of the 

STACS method on our sparse dataset we decided to try 

training on just two sequences, while computing the BIC 
score of the model using the log likelihood over the third 

training sequence. With this approach the number of states 

learnt varies from 1 to 3 states (mostly 2). The log 

likelihood on the training sequence is a lot more consistent 

too at around -1550. 

Test Matrix  

Three datasets were collected and used for the initial 

experimental analysis. The first one consists of the activity 

of closing the door (Activity 1). The second one consists of 

the phone being idle on the table with random background 

noise (Activity 2). The third consists of walking with the 

phone and clapping at the end (Activity 3). This is purely to 

test the basic discriminative powers of the model as 

opposed to testing real user-scenarios. Each data set 
consists of 10 repetitions or 10 sequences of the same 

activity. The results are presented in Table 1.  

For the purposes of the initial tests, the models obtained 

from the different state discovery approaches were trained 

on only Activity 1 and tested across unseen data of the three 

activities. Furthermore, the models were trained on only 

three sequences of the Activity 1. A simple 1-state HMM, 



which effectively becomes a multivariate Bayes Classifier 

is also included to compare effectiveness. 

5. ANALYSIS 

The performance evaluation shows that the 1-state model 

performs well in discriminating Activity 1 from Activity 2, 

but is not able to demonstrate the same prowess with 

regards to Activity 3. We can clearly see the advantage of 

the HMM looking at the results from the Brute model 

wherein it was able to pick the right activity. The 

discrimination from Activity 2 is also higher.  

STACS did not perform well and this was expected as the 

algorithm was severely overfitting the training data. In fact, 

on the training data we were achieving a log likelihood of 

39.44, but it was not able to classify the unseen data. 

The modified STACS where the BIC is calculated over 

unseen data shows an improvement but is not able to 

perform as strongly as the Brute because it’s trained on less 

data. The difference between learning two and three 

samples is plain to see. 

Hence, while the brute force method might seem inefficient, 

we are not as affected by this because we have a small 

dataset, and it makes sense to use this approach in the 

future.  

6. FUTURE DIRECTIONS 

There are a couple of steps that will be attended to in the 

immediate future. First, would be to build a WFST to 

achieve real-time decoding that allows us to identify an 

event if and when it occurs. The second is to stress test the 
system once an end-to-end system is built, and learn the 

optimum parameters like frame size and BIC criterion. 

Third, we would like to allow for a more provocative user 

experience by encouraging user-feedback and using that to 

perform online learning.  

A learning system such as this is inherently going to have a 

lot of false positives and is highly dependent on user 

feedback to improve prediction and usability. The most 

natural way to go about this would be to use vocal feedback 

empowering the app to ‘listen’ to what the user is saying 

without requiring them to become the users main focus. 

This brings up a couple of research questions — can we go 
beyond a simple “yes” and “no” response model to a more 

natural “cool, that is right!” where we are able to classify 

any response as positive or negative? What methods 

(character, tone of voice, when to ask) can be employed so 

as to be most pleasing to the user? For instance, certain 

traits in students make teachers more patient with some 

students than with others. Identifying a couple and 

including them in our system could encourage constructive 

user feedback and hence improve the system.    

Further down the road, we need to figure out how to use the 

data available from the rest of the sensors on the phone, and 

methods for homogenous representation. We also need to 

figure out how and when to select sensors as appropriated 

by the activity. 

7. CONCLUSIONS 

This paper presents a unique user experience scenario 

wherein the user is able to teach the phone to recognize an 

event or a series of actions by demonstrating the same to 

the phone. The vision is that as the modern cellphone 

matures to become a personal companion, it would need to 

learn more and more from and about the user, with voice 

being the main mode of communication. This work 

represents a step in that direction. 

Overall we built a system that is able to record sensor data 

(microphone and accelerometer in particular) over a 

sequence of actions and machine-learn it in order to 

recognize them the next time it occurs. Different machine-

learning approaches were considered and evaluated, with 

the brute force method coming out on top. What remains is 

being able to perform decoding in real time, and be able to 

employ user feedback for online learning. 
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 1-state Brute STACS STACS-2 

Activity 1 -7310 -7814 -Inf -10352 

Activity 2 -14639 -18205 -Inf -16616 

Activity 3 -7131 -9155 -Inf -8298 

Table 1. Performance of models trained based on the four 

methods described above across three different activities. 

Values are in log likelihoods. 


