
iLearn: The App that Learns
Rahul Rajan

CMU-SV
rahul.rajan@sv.cmu.edu

ABSTRACT

In this paper, we describe iLearn, an application that
embodies the Program-by-Demonstration paradigm on the
Android platform. The objective here is to be able to
"demonstrate" an activity to the phone that attempts to learn
it, and recognize every subsequent occurrence of this
particular activity. The paper will begin with the steps
involved in feature engineering the sensor data from the
microphone and the accelerometer. It will then cover how a

sequence of actions can be modeled using HMMs, including
state discovery. It also discusses how employing user
feedback in the learning process can provide for a more
provocative user experience.

Author Keywords

PbD (Program-by-Demonstration), HMMs, MFCC,

Android, Accelerometer.

ACM Classification Keywords

H5.m. Information interfaces and presentation (e.g., HCI):

Miscellaneous.

General Terms

Algorithms, Performance, Design, Human Factors.

1. INTRODUCTION

Mobile phones, for better or worse, have woven themselves

into the very fabric of our society. Their phenomenal

penetration into all facets of our lives has fundamentally

altered how we use them as tools and as social

intermediaries. In particular, phones today have a barrage of

sensors that digitize the physical world around us. On the

flip side of the same coin, they keep us virtually connected

to anyone on the planet. It isn’t much of a stretch, then, to

make the argument towards recognizing them as bona-fide
social participants, if not citizens of modern society.

To buffer this line of thought it might be worthwhile to

think of devices as beings. One can imagine a framework

within which it would be possible to download predefined

personas like Casper the friendly ghost that can be

customized or adapted to the needs of the user. Some might

see use in them as personal secretaries, seek them as

companions or employ them as trainers. Immediately we

see how voice becomes the primary mode of interaction.

We also see how bringing emotional and social intelligence

to these devices gives them life, so as to speak, which will

be the focus of future work.

This paper describes an Android app that is a small step

towards this direction. Like a lot of apps, its basic purpose

would be to harness the phones capability to link the

physical world with the cyber world. Only instead of being

hardcoded for a particular application it can be taught to

identify multiple events and respond accordingly, in

essence allowing the user to intuitively script the physical

world. A couple of scenarios allow us to describe it further
— a phone uses its sensors to fingerprint a physical event

like the door of a user’s office being closed shut; it

identifies the event the next time it occurs and carries out a

task like blocking off the next hour on the user’s calendar.

If it detects multiple people in the room, it can prioritize

phone calls and change the chat client status to busy. In

another scenario, it fingerprints the sound of shower water

running and start’s a timer for 10 minutes to remind you to

conserve water or can detect when you have been sitting in

a single position for too long and remind you to stretch.

Perhaps it can come pre-taught to detect aggravated
motions and screams for help and place a call with 911 or

the local police.

In section 3, we discuss the extraction of audio features

from the microphone on the Android that allow us to do

precisely this sort of fingerprinting. We use the framework

used in popular speech recognition systems to model and

learn ambient sounds (running water, whistling kettle,

Starbucks). We also discuss the feature extraction for the

accelerometer. For the sake of simplicity only the

accelerometer and microphone sensor data are used.

In this section, we also discuss the learning algorithms used

for learning the sequence of actions, namely HMMs
(Hidden Markov Models) and methods to overcome the

fundamental limitation of HMMs i.e. state discovery. We

also compare the performance of the different methods

used.

In section 4, we present the results of the system across

three activities including the act of closing the door, leaving

the phone on the table with random background noise, and

the act of walking with the phone and clapping at the end.

The purpose of the last one is to test the discriminating

power of the learned model.

Copyright is held by the author/owner(s).
MobileHCI 2011, Aug 30–Sept 2, 2011, Stockholm, Sweden.
ACM 978-1-4503-0541-9/11/08-09....$10.00.

2. RELEVANT WORK

Different aspects of building such an application for the

mobile phone have been touched upon by research efforts

from various groups. SoundSense focuses on the use of the

microphone sensor for people-centric applications [2]. The

Mobile Lifelogger uses activity language to model data

from the accelerometer [3]. Work by Ramos, et al. present

a scheme for classification of unstructured audio based on

STACS (Simultaneous Temporal and Contextual Splitting)
which discovers the appropriate number of states and

efficiently learns accurate HMM parameters for given data

[4].

SoundSense

SoundSense discusses and implements a general-purpose

system for sensing sound on the iPhone. It uses a

combination of supervised and unsupervised learning

techniques to classify both general sounds (e.g. music,

voice) and discover novel sound events unique to the

individual user. Keeping in mind the resource limitations of

building a system on a mobile phone the architecture uses

frame admission control based on the energy level and

spectral entropy of the incoming audio signal. A low energy
level indicates silence or undesirable phone context. A high

entropy level represents a flat spectrum (silence or white

noise). Once a frame is adjudged to have interesting

content, it is sent down the pipeline to a coarse category

classifier (decision tree). A Markov model recognizer is

used to smooth the output from the decision tree and sent to

either a voice analyzer, a music analyzer or an ambient

sound learner.

The ambient sound learner is an unsupervised classifier that

discovers over time environmental sounds that are

significant to the individual user. MFCC (Mel-Frequency

Cepstral Coefficients) are used as audio features, which
inherently encode details in the frequency bands to which

the human ear is sensitive. A Bayes Classifier is used to bin

frames into one of B multivariate Gaussians classes. These

classes are determined by a ranking algorithm based on

encounter frequency and summed duration of the sounds.

Similar to the coarse classifier an HMM is used to smooth

the output.

Mobile Lifelogger

The Mobile Lifelogger is basically a system to aid with the

easy creation and retrieval of activity logs collected from

the sensors on the mobile phone. The sensory data from the

accelerometer and the GPS are converted to an ‘activity

language’ so as to apply natural language processing

techniques to index, recognize, segment, cluster, retrieve,
and infer high-level semantic meanings of the collected

lifelogs. The other advantages of such an approach are

dimension reduction, and a uniform representation of

heterogeneous sensor data.

The crux of the approach lies in the analogy between

human activity and language (hence the term ‘activity

language’). They both exhibit structure and satisfy

grammars. The anatomy of the body allows us to perform

certain atomic movements such as “turn upper body left”

where as “jump up at 10g acceleration” is not possible.

Such atomic movements form the vocabulary of the activity

language. Empirically, the similarity between ambulatory
activity and natural languages can be evaluated using Zipf’s

law. While such an approach looks promising for the

purposes of the iLearn app, we believe that at least for

audio classification, the data wouldn’t follow Zipf’s law

very well.

STACS

HMMs have been used extensively in speech recognition,

bioinformatics, information extraction and other areas. One

of the deficiencies of HMMs is that the model topology and

the number of states have to be chosen in advance.

Secondly there is a tendency for the model to over fit the

training data if it is sparse. The authors of [1] discuss a top-

down model selection and learning algorithm that

constructs an HMM by alternating between parameter
learning and model selection while incrementally increasing

the number of states. Candidate models are generated by

splitting existing states and optimizing relevant parameters

(contextual and temporal), and are then evaluated for

possible selection.

The Bayesian Information Criterion, or BIC score, is an

asymptotic approximation of the true posterior probability

(which itself is intractable to compute) and is used to

compare the candidate models to each other. The BIC score

effectively punishes complexity by penalizing the number

of free parameters and rewards goodness-of-fit via the data
log-likelihood, thus safeguarding against over-fitting.

3. DESIGN AND IMPLEMENTATION

This section discusses the design considerations and
implementation approaches that were considered to develop

the iLearn app on the Android. First we discuss the feature

extraction process and then the machine-learning algorithm.

In the rest of the paper we assume that that the data on

which we can run our learning algorithms is quite sparse

and consists of three repetitions of an event.

Feature Extraction

Microphone

The challenges of developing on a cellphone are defined

and limited by the strain placed on the battery, CPU and

memory resources. Also microphones on telephones,

walkie-talkies, etc. sample the incoming audio signal at 8

KHz, which is quite adequate for human speech. But

according to the Nyquist-Shannon sampling theorem, the

microphone can’t capture information above 4 KHz,

implying that information at these higher frequencies is
lost.

On the Android, the AudioRecord class manages the audio

resources for applications to record audio from the

hardware. Audio is sampled into the circular hardware

buffer using the 16 KHz 16-bit PCM Mono format. This

data is then segmented into uniform frames for feature

extraction and classification. Ideally, we would like to use
the same parameters used by widely used speech

recognition systems. HTK, for example, uses frames of 25

ms that overlap every 10 ms. While these are heuristic

figures that have been found to work well in practice, the

basic requirement is that the frame width be short enough

so that the audio content is stable (steady state) while being

long enough to capture the characteristic signatures of the

sound.

This segmenting and overlap is implemented using the

interface method provided by Android that implements a

callback function every predefined period (set to 10 ms).

This 10 ms data is copied into one of three arrays in a
circular function, i.e. each of these arrays gets data once

every 30 ms. These arrays then push their data into a larger

array that can hold 25 ms of data in a circular fashion.

Once we have the frame of samples, we apply MFCC,

which is a widely used feature set for audio processing. The

steps involved are: (i) apply a hamming window to each

frame to suppress the boundaries to counteract the effects of

spectral leakage that occurs during the FFT, (ii) calculate

the FFT spectrum of the frame, (iii) wrap onto the

perceptual Mel-frequency scale, (iv) convert to dB, and (v)

take the inverse discrete cosine transform (DCT-II since it’s
real valued). Only the first few (12) coefficients are used to

represent a frame. Therefore MFCCs provide a low-

dimensional, smoothed version of the log spectrum, and

thus are a good and compact representation of the spectral

shape. A modified version of the CoMIRVA project’s

MFCC class was implemented for this purpose [5].

Accelerometer

Accelerometers are devices that measure the proper

acceleration, i.e. the acceleration relative to free-fall (which

is zero-gravity). This is because they must work without

any outside reference. This usually means that the only

observable quantity is force. In particular, the gravitational

pull of the Earth introduces a force that is interpreted as

acceleration. Thus, the phone when kept idle on a table
measures the force acted against it, which comes out to be

9.8 m/s2 along the z-axis.

The accelerometer is sampled at the fastest setting provided

by Android, which is SENSOR_DELAY_FASTEST, which

has observed to be between 5-10 ms on the Droid. The

readings along the x, y and z-axis are recorded at this

frequency. They include the effect of the gravity component

along the axes depending on how the phone was held. Some

preprocessing of the accelerometer data is necessary to

remove the effect of device orientation from the data.

Otherwise the device needs to be held in exactly the same

way for every repetition of an activity.

Applying a ramp filter (high pass filter) sufficiently negated

the effect of gravity. It was noticed that noise occurs at the

higher frequency and employing a high-frequency roll-off

smoothens out the data.

Feature Set

We end up with a 15-D feature set (12 MFCC +

Acceleration along x, y and z) which is written to a file
every 50 ms for further offline processing on Matlab.

Before any processing is done in Matlab the data is first

standardized, i.e., the data is transformed to have zero mean

and unit variance.

Learning Process

A number of machine-learning approaches were looked

into, including DTW, heuristic thresholds and Bayes

Classifier, before settling on HMMs, the de-facto method

for pattern recognition. It is interesting to note that a key

point that kept coming up while these methods were being

discussed was the idea to employ some sort of temporal

clustering on data that were similar in value, and seemed to

belong to the same state, so as to speak. This, of course, is
quite similar to the concept of HMMs.

Hidden Markov Models (HMMs)

HMMs are widely used in speech, handwriting and gesture
recognition. HMMs assume that the system being modeled

is a Markov process, i.e. the future states belong only on the

current state. It makes sense to use HMMs for the iLearn

app because we have a sequence of sensor data that we

need to learn while the state sequence that produced this

output remains hidden. We learn a model that statistically

determines transition probabilities, output probabilities and

priors among the states. For our purposes we assume that

the features are independent of each other (diagonal

covariance) and that the HMM is a forward model, i.e. the

state transitions are limited to staying in the current state or
moving to the next state. HMMs was implemented in

Matlab using a modified version of the HMM Toolkit for

Matlab [6].

State Discovery

One of the shortcomings of the HMM is that the number of

states need to be defined beforehand. In the case of the

iLearn app, it would not make sense to do this, as it

contradicts the very purpose of the application, which is to

be able to learn whatever event the user wants to teach it.

A couple of approaches were tried to discover the optimum

number of states for a given activity. First, a brute force

method is used wherein a new model is created by

increasing the number of states of the prior model by one

and its parameters learnt from scratch with random
initializations. This new model is compared with the old

model using BIC, which penalizes model complexity (state

size). This process continues until the prior model has a

higher BIC score than the new model.

The second approach used the STACS method to generate

N candidate models at each step, where N is the number of

states in the prior model. Each split state generates one

particular candidate. The initialization of the new states
depends on the state that was split. The priors of the new

states are half the priors of the parent state. The transitions

from one state to the other are half the self-transition

probability of the parent state. These candidates are

compared against each other and the prior state using BIC.

The state splitting continues until the prior model carries a

higher score than the other candidate models.

As an addition to the second approach, the models were

trained on two sequences of data (first two repetitions) and

the BIC score was calculated on the held out third sequence

of data to check for and prevent overfitting of the sparse

dataset.

4. EXPERIMENTAL RESULTS

Feature Extraction

Initially the feature extraction process on the Android was

taking upwards of 250 ms. It was realized that Java’s
garbage collection in Android was taking over 200 ms and

that this phenomenon was occurring frequently within the

MFCC extraction process. Further analysis revealed that it

was the instantiation of arrays every time the MFCC was

computed that was causing the garbage collection to kick

in. To circumvent this, the code was modified and all the

arrays were made static. This included making functions in-

line and having certain variables be made public so that

passing and copying of arrays could be made minimal. This

brought down the time taken to compute the MFCC to a

more palatable 15 ms.

The bottleneck it appeared was the wrapping of the FFT to
the Mel-frequency which takes 12 ms. This step is

performed by multiplying a 24x513 Mel-filter bank with the

513x1 real FFT. Normal matrix multiplication is O(N3).

The fastest algorithm for multiplying matrices is the

Strassen Algorithm with O(N2.8). But the speed up is

noticed only for very large matrices. Various other methods

were looked into including performing the matrix

multiplication in C using JNI. In Java, however, 2-d arrays

are objects that need to be passed and copied from one

environment to the other. The improvement in time would

be negligible if at all.

The push to lower the time taken by the MFCC is to be able

to extract features on 25 ms frames that overlap every 10

ms. However, in [2] Lu, et al. show that a larger frame

length tends to increase recall but decrease precision for

ambient sounds. 64 ms it appears is a good trade-off point

considering both precision and recall. Thus we see that the

length of the MFCC frame is critical as it impacts the

computational costs and classification accuracy. It would be

an important parameter to tweak once an end-to-end system

is deployed and there is sufficient data to run tests on.

Learning Process

We evaluate the three different state discovery approached

independently, and then use a test matrix to check their

performance across different activities.

Brute Force

Using this approach, we find that because of the random

initializations, the fact that the EM algorithm is prone to

find local minima, and the sparseness of the data, the state

size varies a lot. To learn the door close activity over three
repetitions, the state size varies from 2 to 8 states. The log

likelihood on the training data falls in between -2500 to -

1500.

STACS

Here we find this approach overfitting the training data very

strongly. Upwards of 20 states is usually learnt on the three

sequences of training data. The algorithm seems to be

assigning states to single data points as the log likelihood

becomes positive (+250) for some of the candidate models.

This is characteristic of overfitting in Gaussians. Because

there is only one data point, the variance goes to zero and

the likelihood goes to infinity.

STACS using Held-out data

To overcome the strong overfitting tendencies of the

STACS method on our sparse dataset we decided to try

training on just two sequences, while computing the BIC
score of the model using the log likelihood over the third

training sequence. With this approach the number of states

learnt varies from 1 to 3 states (mostly 2). The log

likelihood on the training sequence is a lot more consistent

too at around -1550.

Test Matrix

Three datasets were collected and used for the initial

experimental analysis. The first one consists of the activity

of closing the door (Activity 1). The second one consists of

the phone being idle on the table with random background

noise (Activity 2). The third consists of walking with the

phone and clapping at the end (Activity 3). This is purely to

test the basic discriminative powers of the model as

opposed to testing real user-scenarios. Each data set
consists of 10 repetitions or 10 sequences of the same

activity. The results are presented in Table 1.

For the purposes of the initial tests, the models obtained

from the different state discovery approaches were trained

on only Activity 1 and tested across unseen data of the three

activities. Furthermore, the models were trained on only

three sequences of the Activity 1. A simple 1-state HMM,

which effectively becomes a multivariate Bayes Classifier

is also included to compare effectiveness.

5. ANALYSIS

The performance evaluation shows that the 1-state model

performs well in discriminating Activity 1 from Activity 2,

but is not able to demonstrate the same prowess with

regards to Activity 3. We can clearly see the advantage of

the HMM looking at the results from the Brute model

wherein it was able to pick the right activity. The

discrimination from Activity 2 is also higher.

STACS did not perform well and this was expected as the

algorithm was severely overfitting the training data. In fact,

on the training data we were achieving a log likelihood of

39.44, but it was not able to classify the unseen data.

The modified STACS where the BIC is calculated over

unseen data shows an improvement but is not able to

perform as strongly as the Brute because it’s trained on less

data. The difference between learning two and three

samples is plain to see.

Hence, while the brute force method might seem inefficient,

we are not as affected by this because we have a small

dataset, and it makes sense to use this approach in the

future.

6. FUTURE DIRECTIONS

There are a couple of steps that will be attended to in the

immediate future. First, would be to build a WFST to

achieve real-time decoding that allows us to identify an

event if and when it occurs. The second is to stress test the
system once an end-to-end system is built, and learn the

optimum parameters like frame size and BIC criterion.

Third, we would like to allow for a more provocative user

experience by encouraging user-feedback and using that to

perform online learning.

A learning system such as this is inherently going to have a

lot of false positives and is highly dependent on user

feedback to improve prediction and usability. The most

natural way to go about this would be to use vocal feedback

empowering the app to ‘listen’ to what the user is saying

without requiring them to become the users main focus.

This brings up a couple of research questions — can we go
beyond a simple “yes” and “no” response model to a more

natural “cool, that is right!” where we are able to classify

any response as positive or negative? What methods

(character, tone of voice, when to ask) can be employed so

as to be most pleasing to the user? For instance, certain

traits in students make teachers more patient with some

students than with others. Identifying a couple and

including them in our system could encourage constructive

user feedback and hence improve the system.

Further down the road, we need to figure out how to use the

data available from the rest of the sensors on the phone, and

methods for homogenous representation. We also need to

figure out how and when to select sensors as appropriated

by the activity.

7. CONCLUSIONS

This paper presents a unique user experience scenario

wherein the user is able to teach the phone to recognize an

event or a series of actions by demonstrating the same to

the phone. The vision is that as the modern cellphone

matures to become a personal companion, it would need to

learn more and more from and about the user, with voice

being the main mode of communication. This work

represents a step in that direction.

Overall we built a system that is able to record sensor data

(microphone and accelerometer in particular) over a

sequence of actions and machine-learn it in order to

recognize them the next time it occurs. Different machine-

learning approaches were considered and evaluated, with

the brute force method coming out on top. What remains is

being able to perform decoding in real time, and be able to

employ user feedback for online learning.

8. REFERENCES

1 Siddiqi, Sajid, Gordon, Geoffrey J., and Moore, Andrew

W. Fast State Discovery for HMM Model Selection and

Learning.

2 Lu, Hong, Pan, Wei, Lane, Nicholas D., Choudhury,

Tazneem, and Campbell, Andrew T. SoundSense:

scalable sound sensing for people-centric applications on

mobile phones. In Proceedings of the 7th international

conference on Mobile systems, applications, and services

(2009), ACM, 165-178.

3 Chennuru, Snehal, Chen, Peng-Wen, Zhu, Jiang, and

Zhang, Ying. Mobile Lifelogger - recording, indexing,

and understanding a mobile user's life.

4

Ramos, Julian, Siddiqi, Sajid, Dubrawski, Artur, Gordon,

Geoffrey, and Sharma, Abhishek. Automatic State

Discovery for Unstructured Audio Scene Classification.

5 Schedl, Markus: CoMIRVA

6 Murphy, Kevin: HMM Toolkit for Matlab

 1-state Brute STACS STACS-2

Activity 1 -7310 -7814 -Inf -10352

Activity 2 -14639 -18205 -Inf -16616

Activity 3 -7131 -9155 -Inf -8298

Table 1. Performance of models trained based on the four

methods described above across three different activities.

Values are in log likelihoods.

